
Subscription Server Design Review
Shankar Rachakonda

vrachako@eos.hitc.com

17 April 1996

706-CD-003-001 Day 3 Book B SR2-1

SR2-2706-CD-003-001 Day 3 Book B

CSCI Overview

• Driving Requirements

• CSCI Software Design

• OO Design Models

• Design Drill Down

SR2-3706-CD-003-001 Day 3 Book B

Driving Requirements

Architectural Drivers
• Support a Producer-Consumer paradigm

• Generic Event-Action Model

New Release B Features
• Migration of Data Server Subscription Model

- Broader range of actions

- Complete separation of client, event source and service provider

• A common mechanism across subsystems

• Timed events

• Modifying subscriptions

SR2-4706-CD-003-001 Day 3 Book B

Subscription Server Context

Subscription Server allows ECS to support clients’ desire to
have actions taken based on the occurrence of future events

ECS Event
Producing

Subsystems

Subscription
Server

ECS Event
Subscribing
Subsystems

OR

Users/Operators

Event
Notification

Send Action

Send Action

Notification
P-P or e-mail

Document Reference:
305-CD-028-002,
Fig. 4.5.3.1-1

SR2-5706-CD-003-001 Day 3 Book B

Subscription Server Context

ECS Subscription Event Producers
• Data Server

• Advertising Service

• Data Dictionary Service

ECS Subscribers
• Client on behalf of science users

• Data Processing

• Planning

• Operator Interfaces on behalf of operators

SR2-6706-CD-003-001 Day 3 Book B

Attributes

Event

EventID
EventName
EventCategory
EventDescription

Subscription

ServerUR
EventID
UserProfile
ExpireDate
StartDate
Action

Action

NotificationText
Requests

Subscribe to

Contains Examples of Events:
• Science Granule Insertion

• Metadata Update

• New Advertisement

• New Schema Export to DDICT

Examples of Actions:
• E-mail / IPC

• Acquire / Insert data

SR2-7706-CD-003-001 Day 3 Book B

Subscription Service
Capabilities

Register New Events
• Stored persistently

• Made available through Advertisement Service

Accept Subscriptions
• Accept new Subscription Requests that specify an action to be taken and an event

to initiate the action

• Accept Subscription Update Requests to update stored Subscriptions

• Validate Subscription Requests

Process Subscriptions upon Event Notification
• Identify all subscriptions to the specified event

• Process the actions defined in the Subscriptions
- E-mail notification

- direct program interface to other service providers

SR2-8706-CD-003-001 Day 3 Book B

contains

Software Design –
High Level Class Model

EventTimer
Event

Handler

Event Store

Subscription
Server

Subscription

Action

Request
Service
Provider

Event

For details, reference:
305-CD-028-002

Subscription
Store

Subscription
Handler

contains

uses uses
queries queries

stores stores

handles handles

contains

uses

SR2-9706-CD-003-001 Day 3 Book B

Class Descriptions

SubscriptionServer

Event

EventHandler

EventStore

Subscription

SubscriptionHandler

SubscriptionStore

Action

EventTimer

Implementation of an event

Provides an interface to interact with a database of events

Implementation of a single subscription

Provides an interface to interact with a database of subscriptions

Actions to be performed when events fire

Provides access to the processing of events and subscriptions

Provides an interface to manage events

Provides an interface to manage subscriptions

Time keeper to maintain and generate timed events

SR2-10706-CD-003-001 Day 3 Book B

Object Model

The following object models will be reviewed:

Model Name Document Reference Section

Subscription Client 305-CD-028-002 4.5.3.3

Subscription Server 305-CD-028-002 4.5.3.4

Subscription Attributes 305-CD-028-002 4.5.3.5

Notification Object 305-CD-028-002 4.5.3.6

SR2-11706-CD-003-001 Day 3 Book B

Dynamic Model

The following event traces will be reviewed:

Event Trace Name Document Reference Section

Submitting a Subscription 305-CD-028-002 4.5.3.5.1

Registering a Subscribable Event 305-CD-028-002 4.5.3.5.6

Fulfilling a One Time Subscription 305-CD-028-002 4.5.3.5.4

SR2-12706-CD-003-001 Day 3 Book B

Event Traces

Submitting a Subscription

Scenario
• In this scenario the client has retrieved a subscription advertisement from the

Advertising Server and has decided that he/she would like to be notified upon
the future occurrence of that advertised event.

Functional Description
• Client application creates a subscription, passing the advertisement (event

information) and user information.

• The client then creates an action which includes a request and an optional
notification text string (user-entered data).

• Next the EcClSubscription objects SetAction() operation is used to register the
user defined action.

• Finally, the server uses AddSubscriptions() to add the new subscription to its list
of managed subscriptions.

Assumptions/Preconditions
• A user has selected an advertised subscription from the Advertiser.

SR2-13706-CD-003-001 Day 3 Book B

Submitting a Subscription

Calling
Object Subscription

Create

Server-side
Subscription

Event Store

Connect

Subscription
Collector

Create

Server sideClient side

SetAction

Submit

Insert

SubmitSubscription

Create

GetEventID

AddSubscriptions

Assumes an Action
was created
before the start
of this scenario

Subscription
 Server

SR2-14706-CD-003-001 Day 3 Book B

Event Traces

Registering a Subscribable Event

Scenario
• The purpose of this scenario is to show how a subscribable event gets

established.

Functional Description
• Client Application creates a Client Event (EcClEvent) with a name, category, and

description. This causes a creation of the event (EcSbEvent) within the
Subscription Server process space.

• Client Application then invokes the Register() method which stores the event in
database, and notifies the Subscription Server that this is now a known event.

• The Subscription Server coordinates with the Data Management Subsystem to
advertise the fact that this event is subscribable.

SR2-15706-CD-003-001 Day 3 Book B

Event Traces

Scenario (Continued)

Assumptions/Preconditions
• The Science Data Server has the UR of its Subscription Server Factory.

• The Subscription Server is active.

• There is just one event being registered.

SR2-16706-CD-003-001 Day 3 Book B

Registering an Event

Client
Event

Create

Subscription
Server

EventStore

Instantiates

Event

Server sideClient side

CreateEvent

Event
Vector

Event
Generator

Register

construct

Register

RegisterEvent

Notify

Register

Advertisement

SR2-17706-CD-003-001 Day 3 Book B

Event Traces

Fulfilling a One Time Subscription

Scenario
• This scenario shows how a server fulfills a previously submitted subscription.

Functional Description
• Client Application instantiates the event (EcClEvent) with the known eventID.

• Client Application calls EcClEvent.Trigger() method, which in turn calls the
Trigger() method of EcSbEvent on the server side.

• EcSbEvent.Trigger() instantiates the EcSbSubscription Handler Object.

• EcSbSubscriptionHandler.ProcessEvent() method will retrieve all subscriptions
of this event from the Subscription Store and execute them.

SR2-18706-CD-003-001 Day 3 Book B

Event Traces

Scenarios (Continued)

• The EcSbSubscription object contains the receivers (via GetNotify())
and the notification text (via GetText())

• The notification is then sent via the EcSbNotification object.

Assumptions/Preconditions

• The event has been registered, and is subscribable.

• The event has occurred.

SR2-19706-CD-003-001 Day 3 Book B

Event Notification &
Subscription Execution

Calling
Object Event

Instantiates

SubscriptionStore Server-side
Subscription

ProcessEvent(evenID)

Subscription
Handler

Subscription Server

Server sideClient side

Assumes Events
have been created
on both client and
server before
scenario began.

Trigger

Execute

SR2-20706-CD-003-001 Day 3 Book B

Selected Public Interfaces

EcUtStatus EcClEvent:Register()

• This method is called from the client application.

Functional Description

• Check if all event data has been set.

• IF status indicates failure

- Return failed status

• Call Register() method of the Event Proxy distributed object.

• Check status

• Return

SR2-21706-CD-003-001 Day 3 Book B

Selected Public Interface

EcUtStatus EcSbEvent:Trigger(GlParameterList&)

• This method is called at the occurrence of a given event.

Functional Description

• Instantiates EcSbSubscriptionHandler object.

• Call EcSbSubscriptionHandler->ProcessEvent(eventID,GlParam) to fire
all the subscriptions for this event.

• IF status indicates failure

- Return failed status

SR2-22706-CD-003-001 Day 3 Book B

Selected Public Interface

EcUtStatus EcClSubscription::Submit()

Functional Descritpion

• Check if all data has been set.

• IF status indicates failure

- Return failed status

• Invoke EcScSubscriptionCollector::Insert(*this) method to add
subscription into the collection vector.

• Invoke EcScSubscriptionCollector::SubmitSubscription()
method, to submit the provided subscription to subscription
server.

• Check status

SR2-23706-CD-003-001 Day 3 Book B

Design Drill Down

Client Application Main

main()
{
...
// Instantiates client subscription(EcClSubscription). The underlying factory will automatically
// create this subscription on the server side.
EcScSubscription* mySubscription = new EcScSubscription(serverUR, EventID,
 user, expDate, startDate, action);
mySubscription->Submit();
...
}

SR2-24706-CD-003-001 Day 3 Book B

Design Drill Down

EcClSubscription

//Constructor of EcClSubscription. This implementation uses the concept of Factory to
// create subscription object dynamically. In this example, the auto-filled constructor is
// used to create subscription.
EcClSubscription::EcClSubscription(EcUrUR server,

 EsTSbEventID eventID,
 MsAcUserProfile& user,
 RWDate expDate,
 RWDate startDate,
 EcClAction& action)

{
// Instantiates the distributed client side factory interface(EcClFactoryProxy). This will in turn
// instantiate the client side factory object factoryIDL_1_0 using the provided server UR
 myFactory = new EcClFactoryProxy(server);

// Pack the subscription data into byte data

SR2-25706-CD-003-001 Day 3 Book B

Design Drill Down

(EcClSubscription Continued)

// Call method CreateNewSubscription() to send data across the network and create
// subscription on the server side. This method will also register this subscription
// interface with GSO, and return a DCE object reference of the interface.
mySubscriptionProxyRef = myFactory->CreateNewSubscription(data);
...

// Use the object reference to construct client subscription proxy.
mySubscriptionProxy = new subscriptionIDL_1_0(mySubscriptionProxyRef);

// Save the object uuid for later use (for example, to destroy the object)
mySubscriptionProxyUuid = mySubscriptionProxyRef->objId;

}

SR2-26706-CD-003-001 Day 3 Book B

Design Drill Down

Submit

// This method is called by client application main to submit a subscription
// to the system. The subscription will be stored in the subscription store
// database.

EcUtStatus EcScSubscription::Submit()
{
...
status = mySubscriptionProxy->Submit();
...
}

SR2-27706-CD-003-001 Day 3 Book B

Design Drill Down

Subscription Server

// EcSbFactoryConcrete inherits from the factory manager object, in addition,
// it maintains a list of subscriptions that are being created.

extern EcSbSubscriptionServer *mySubscriptionServer;

DCEObjRefT* EcSbFactoryConcrete::CreateNewSubscription(data)
{
// Unpack data
...

// Subscription Server is used to create a server side (local) subscription
EcSbSubscription* mySubscription = mySubscriptionServer->CreateSubscription(
 eventID, user, expDate, startDate, action);

SR2-28706-CD-003-001 Day 3 Book B

Design Drill Down

Subscription Server (Continued)

// Instantiates server side subscription interface (EcSdSubscriptionConcrete).
// EcSdSubscriptionConcrete inherits from subscription manager object
// subscriptionIDL_1_0_Mgr. In addition, it contains a pointer to its server side (local)
// subscription object. This will be used to identify its corresponding local server subscription
// object when the object is destroyed.
EcSdSubscriptionConcrete* myNewSub =
 new EcSdSubscriptionConcrete(mySubscription);

// Add this subscription to the list that the factory maintains
AddSubscription(myNewSub);

theServer->RegisterObject(*myNewSub), true);

return myNewSub->GetObjectReference();
}

SR2-29706-CD-003-001 Day 3 Book B

Design Drill Down

Trigger

EcUtStatus EcSbEvent::Trigger()
{
...
EcSbSubscriptionHandler* myHandler = new EcSbSubscriptionHandler();

// get all subscriptions of this event, execute the corresponding action
status = myHandler->ProcessEvent(GetID());
...
return status;
}

SR2-30706-CD-003-001 Day 3 Book B

Performance Considerations

• Submitting subscriptions occurs so infrequently, the impact on the system is
negligible

• E-Mail flow rate not a concern

• Even in case of abnormal events where every user needs to be notified
Performance Modeling indicates that the impact will not be catastrophic

• Throttling of Message Handler always an option. Isolation from a hardware
standpoint

Infrastructure Review Issues

• Need to understand the overhead of SendMail is now much less important

SR2-31706-CD-003-001 Day 3 Book B

Nominal E-Mail Usage

E-mail frequency is dependent on the number of external subscription
notifications per day.

The frequency of external subscription notifications was determined from
the user modeling nominal pull subscription requests by DAAC.

All numbers are daily.

EDC - 1023

LaRC - 241

GSFC - 706

NSIDC - 13

ASF - 82

JPL - 36

TOTAL = 2101

